
LLNL-CONF-647212

An Efficient Approach for Solving Large
Stochastic Unit Commitment Problems
Arising in a California ISO Planning
Model

T. Parriani, G. Cong, C. Meyers, D. Rajan

December 4, 2013

IEEE Power and Energy Society General Meeting 2014
National Harbor, MD, United States
July 27, 2014 through July 31, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

An Efficient Approach for Solving Large Stochastic
Unit Commitment Problems Arising in a California

ISO Planning Model
Tiziano Parriani

University of Bologna
Bologna, Italy

Guojing Cong
IBM TJ Watson Research Center

Yorktown Heights, NY USA

Carol Meyers and Deepak Rajan
Lawrence Livermore National Laboratory

Livermore, CA USA

Abstract—We describe our experience in obtaining significant
computational improvements in the solution of large stochastic
unit commitment problems. The model we use is a stochastic
version of a planning model used by the California Independent
System Operator, covering the entire WECC western regional
grid. We solve daily hour-timestep stochastic unit commitment
problems using a new progressive hedging approach that features
linear subproblems and guided solves for finding feasible solu-
tions. For stochastic problems with 5 scenarios, the algorithm
produces near-optimal solutions with a 6 times improvement
in serial solution time, and over 20 times improvement when
run in parallel; for previously unsolvable stochastic problems,
we obtain near-optimal solutions within a couple of hours. We
note that although this algorithm is demonstrated for stochastic
unit commitment problems, the algorithm itself is suitable for
application to generic stochastic optimization problems.

Index terms— integer linear programming, optimization meth-
ods, parallel algorithms, power generation planning

I. INTRODUCTION

The state of California has embarked on an aggressive plan
to produce 33% of its electric energy from renewable resources
by the year 2020 [1]. The increased penetration of intermittent
renewable generation needed to meet this goal will substan-
tially increase the variability and uncertainty in generation
resources available to system operators. To assess the impact
of such high renewable penetrations, the California Energy
Commission funded a recently completed study at Lawrence
Livermore National Laboratory to couple atmospheric models
capable of producing renewable generation trajectories with a
stochastic day-ahead unit commitment optimization model [2].
This stochastic day-ahead unit commitment model employs at
its core a deterministic unit commitment planning model de-
veloped by the California Independent System Operator (ISO)
for their study of market impacts under the 33% renewable
portfolio standard [3]. The deterministic model is based on a
grid description and operational specifications provided by the
California ISO, and is implemented using the PLEXOS power
market software package [4], which generates a mixed-integer
linear programming formulation suitable for determining day-
ahead hourly unit commitment decisions.

The stochastic unit commitment model is formulated as
a two-stage mixed-integer stochastic optimization extension
of the deterministic model, where scenarios are defined by

different renewable generation trajectories, unit commitment
states for long-start generators are treated as first-stage deci-
sions (common across all scenarios), and economic dispatch
values and unit commitment states for short-start generators
are treated as second-stage decisions (one for each scenario).

A. Model Description and Prior Computational Performance

The model representation of the Western Energy Coordi-
nating Council (WECC) grid developed by the California ISO
includes more than 2,400 generating units, over 42 zones
in 11 states, with 120 transmission lines between zones (a
zonal model). Wind and solar (PV) inputs are included at a
zonal level, aggregated from numerous individual real and
proposed wind and solar sites. The California ISO model
calculates hourly day-ahead unit commitments for all 2,400
generating units, with integer commitments for all (several
hundred) generation units in California, and fractional com-
mitments elsewhere. As a result, the deterministic day-ahead
mixed-integer program (MIP) is already fairly large, including
roughly 400,000 constraints, 600,000 continuous variables,
10,000 general integer variables and 2,000 binary variables.

Variables and constraints in the stochastic version of the
model are (roughly) linear multiples of the corresponding
values in the deterministic model, scaling with the number
of scenarios used. Thus, the computational burden associated
with solving such problems becomes prohibitive for even
very powerful systems. In the California Energy Commission
study [2], it was found that for only 8 scenarios, each day-
ahead stochastic unit commitment problem already required an
average of 5 hours to solve, and no solutions at all were found
for 20 or more scenarios. It was for this reason the original
study was downscaled to include only 5 scenarios [2].

B. Contributions

We propose in Section III a new method for solving
two-stage stochastic optimization problems that significantly
reduces the solution time of the aforementioned stochastic unit
commitment problems. As detailed in Section IV, this method
allows us to solve individual unit commitment problems
roughly 6 times faster than previously achievable, while a
parallel implementation of this method (many of its stages are
parallelizable) solves the problems more than 20 times faster.

LAB 13-958: Parallel Algorithms for Discrete Stochastic Optimization 5

using x, y as the first and second stage variables, respectively, as in Figure 3(a).

min
X

s

ps(c
T xs + qT

s ys)

subject to: x1 = x2 = . . . = xS (1a)

Axs = b (1b)

Tsxs + Wsys = hs (1c)

l1  xs  u1, l2  ys  u2

xj
s 2 Z, 8j 2 D1 ✓ {1, . . . , n1}

yj
s 2 Z, 8j 2 D2 ✓ {1, . . . , n2}

Here, the constraints (1b) model the first stage decisions, constraints (1c) model the second stage
decisions, and constraints (1a) model the non-anticipatory constraints, which ensure that first-stage
decisions are identical across scenarios.

The LP relaxations of such MIPs tend to be very weak. Furthermore, when the number of
scenarios is large, the relaxations are also too big to fit on a core. At the same time, the default LP
algorithm, the simplex, is sequential in nature, and does not parallelize well, though there is recent
work on parallelizing the simplex method, see [16] for a review of the challenges involved. Recently,
a parallel implementation of simplex has been developed for the LP relaxation of sample-based
MIPs [24]. A sample-based MIP solver that uses LP relaxations can indeed utilize these algorithms
to develop a parallel implementation, but it would still be restricted by the underlying weakness of
the LP relaxations of sample-based MIPs.

Proposed Approach: We will leverage the unique structure of sample-based MIPs to develop
e�cient parallel algorithms that utilize relaxations stronger than the LP relaxation. Sample-based
MIPs consist of mostly independent sets of variables and constraints (one per sample) tied together
by coupling constraints, see Figure 3(b). On relaxing these constraints, the problems decompose
into a master problem and a child subproblem for each scenario, lending themselves naturally to de-
composition schemes that compute Lagrangian or Dantzig-Wolfe relaxations [8]. These relaxations
are solved using an iterative scheme that alternatively solves the master and child subproblems
(which can be solved in parallel using generic MIP solvers) until it converges. Since these relax-
ations are stronger than the LP relaxation, they result in much stronger (theoretical) convergence
of the B&B scheme. Each of these relaxations will be solved in parallel, as illustrated in Figure 2(b).
In this multi-level framework, the available parallelism is limited by the amount of computational
resources, and not by the number of samples, since many Dantzig-Wolfe (or Lagrangian) relaxations
are being solved simultaneously in the B&B scheme, one for each node of the tree.

In both decomposition schemes (Lagrangian and Dantzig-Wolfe) the master problem is much
easier to solve than the child subproblems. In each iteration of the Lagrangian Relaxation, the
master problem is no harder than calculating a set of constants, the values of which determine the
objective function of the child subproblem in the next iteration. In Dantzig-Wolfe decomposition,
the master problem is a Linear Programming problem, which is much easier to solve than a MIP.
However, in every iteration of both the schemes, each decomposed child subproblem is a MIP
(essentially a single-sample version), which implies that these alternative relaxations are much
harder to solve than the LP relaxation. This is the main reason that generic MIP solvers do not use
these alternate stronger relaxations, though a recent study [25] shows that these may be worthwhile
for many more problems than previously believed, even those without any apparent decomposable
structure. Extending this argument, we believe that in the case of problems with special structure,
such as these decomposable sample-based MIPs, an optimized implementation of specialized solver

(a) Mathematical Formulation: Constraints (1b) and (1c) model
the first- and second-stage decisions, respectively, and (1a)
ensure that first-stage decisions are identical across scenarios.

• • • • • • • • •
• • •
• • •

• • •
• • •

 • • •
 • • •

One	
 sample,	
 one	
 block	

Coupling	

constraints	

between	
 samples	

Non-­‐zero	
 entry	

(b) Pictorial Representation of non-zero entries in constraint matrix: Coupling
constraints (1a) have first-stage variables from all scenarios. Constraints (1b) and
(1c) can be divided into blocks, one for each scenario s.

Figure 1. The deterministic equivalent formulation of the stochastic problem has a specific block-angular structure that allows for dual decomposable schemes.

II. DUAL DECOMPOSABLE SCHEMES FOR STOCHASTIC
OPTIMIZATION PROBLEMS

We begin by reviewing stochastic optimization problems,
and briefly describe schemes for solving such problems. We
then consider the Progressive Hedging (PH) algorithm in de-
tail, highlighting many of its strengths and some weaknesses.

A. Stochastic Optimization: An overview

A stochastic optimization problem is often formulated as
a two-stage optimization problem. Given a set of scenarios
ωs, s ∈ [1, S] with corresponding probabilities ps, the sample-
based MIP is formulated as in Figure 1(a), where x and y are
first-stage and second-stage decision variables, respectively.

This formulation is often referred to as dual decomposable,
since by eliminating the coupling constraints (1a) the problem
can be decomposed into a separate subproblem for each sce-
nario; see Figure 1(b). Many dual decomposition approaches
have been applied to such problems, including Lagrangian
[5], and augmented Lagrangian methods [6], branch and price
approaches based on Dantzig-Wolfe decomposition [7], and
the Progressive Hedging (PH) algorithm proposed in [8]. An
alternate deterministic equivalent formulation uses coupling
first-stage variables that are common for all scenario blocks,
yielding a primal decomposable problem that can be solved by
schemes such as Benders’ when all second-stage variables are
continuous. Extensions have been proposed, but these tend to
be computationally impractical, especially when both stages
have continuous and integer variables [9].

Progressive Hedging (PH) was designed specifically for
stochastic programming problems and combines the idea of
augmented Lagrangian methods with a scenario-based decom-
position. Unlike branch and price and other approaches based
on column generation, the subproblems in PH are updated
without needing to iteratively solve a master problem.

B. The Progressive Hedging Algorithm

For convex optimization problems, such as stochastic linear
programs, PH is guaranteed to converge to the optimal solution
[10], even if the subproblems are solved approximately [11].
In our case, since both first and second stage decisions contain
integer variables, theoretical convergence is lost. Nevertheless,

PH can be applied to non-convex stochastic integer programs
(such as ours) to obtain heuristic solutions [12].

In PH, for iteration i, a subproblem is defined for each
scenario s as:

(SP is) min ps(c
Txs + qTs ys) + f̂ ′s(xs, i) (2a)

Axs = b (2b)
Tsxs +Wsys = hs (2c)
x ∈ X, y ∈ Y . (2d)

Denoting the optimal solution to subproblem s in iteration i
as x∗is , the penalty function f̂ ′s(xs, i) is defined as:

f̂ ′s(xs, i) = λisxs +
1

2
ρi(xs − x̄i)2 ∀i > 0 (3)

f̂s(xs, i) = 0 i = 0 (4)
where ρi > 0 for all i is the “penalty factor,” x̄ is a vector
defined by x̄i =

∑
s∈S psx

∗i−1
s , and λis is defined as

λis = λi−1s + ρi−1(x∗i−1s − x̄i) ∀i > 0 (5)
λis = 0 i = 0 . (6)

At each iteration of the algorithm, problem SP is is solved
for every scenario, and the optimal solutions x∗s are used to
update the penalty function. The goal of the penalty function
is to ultimately guide all first-stage variables x∗ to satisfy
constraint (1a), giving a feasible solution.

PH halts execution when convergence is reached for all the
first-stage variables. In a commonly used termination criterion
[13], PH terminates when the norm

δ = {||x̄i − x̄i−1||2 +
∑

s∈S
ps||x∗is − x̄i||2}

1
2

drops below a certain parametric threshold. In this case δ is
a measure of the “distance from convergence”. As we discuss
later, we also consider termination criteria based on the gap
between the best-known upper bound (from feasible solutions)
and the best-known lower bound (obtained by combining the
solutions of the subproblems for the first iteration). In practice,
many problems also consider a global execution time limit.

The main drawbacks of PH are that the common penalty
function produces a quadratic integer program for each sub-
problem, which can present computational challenges; further-
more, the PH scheme does not provide feasible solutions to

the stochastic problem until it converges (or at least all the
integer-first stage variables converge). Even then, there is no
guarantee that a feasible solution exists for the original prob-
lem with fixed first-stage integer variables. We address both
these shortcomings in mPH, our modified PH-based algorithm
for solving two-stage stochastic optimization problems.

III. MPH: A PH-BASED HEURISTIC FOR TWO-STAGE
STOCHASTIC PROBLEMS

We motivate our introduction of mPH, a modified version of
PH effective in solving large real-world stochastic problems,
by detailing our approach in overcoming the drawbacks of PH.

A. Linear subproblems

The penalty function defined in (3) and (4) leads to quadratic
subproblems. If all the second-stage variables are defined as
binaries there is an equivalent linear formulation for SP is [14],
but this does not apply in our unit commitment problems.
When the size of the problem increases, the quadratic sub-
problems quickly become difficult to solve if not intractable. In
theory, the presence of the quadratic term ensures convergence
to an optimal solution for the convex case (as in stochastic
linear programs). From our perspective, losing the convergence
property by modifying the penalty function is acceptable since
the proof of convergence does not extend to the case of non-
convex stochastic integer programs.

As illustrated in Figure 2(a), the quadratic term in f̂ ′s(xs, i)
pushes the first-stage variables to assume values that are
near the average x̄i. In a linear penalty function obtained
by removing the quadratic term, the deviation from x̄i is not
penalized, causing oscillatory behavior of the variables and
impacting convergence of the algorithm. Therefore, instead of
removing the quadratic term, we approximate the quadratic
distance from x̄i with the absolute distance, as in Figure 2(b).
To the best of our knowledge, this is a new technique in
the context of PH. For a generic scenario s, we define the
following penalty function:

f̂s(xs, i) = λisxs +
1

2
ρi|xs − x̄i| (7)

The intent behind the definition of f̂s(xs, i) is to mitigate
the oscillatory behaviour and allow the solution of linear
subproblems at the same time. Note that with the linear penalty
the overall cost of a given first-stage variable xs,j has a
minimum at x̄ij if penalty factor ρij ≥ 2(cj + λis,j), or at the
minimum defined by c and λis, otherwise (as in Figure 2(c)).

Choosing the correct penalty factor for the original quadratic
penalty function is critical and is often data dependent ([12],
[15]). When f̂s(xs, i) is used instead of f̂ ′s(xs, i), the smooth-
ness of the quadratic penalization is lost and choosing the
correct penalty factor is as critical as in the quadratic case.

Penalty factor: We extend the element-specific penalty factor
first proposed in [12]. The authors define a penalty factor, for
each iteration i and each first-stage variable j, as follows:

ρ̃ij =
|cj |

(maxs x∗is,j −mins x∗is,j)
.

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

αx

ρ

2
(x−x̄)2

cx+αx+
ρ

2
(x−x̄)2

(a)

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

αx

ρ

2
|x−x̄|

cx+αx+
ρ

2
|x−x̄|

(b)

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

αx

ρ

2
|x−x̄|

cx+αx+
ρ

2
|x−x̄|

(c)

Figure 2. Examples of penalty functions: for a given first-stage variable with
original cost c = 0.5, in (a) the penalty function f̂ ′s(xs, i) is represented
supposing λis = −1, ρi = 2; in (b) and (c), the penalty function f̂s(xs, i) is
represented with same λis and,respectively, ρi = 2 and ρi = 2

3
.

With absolute distances, using the same definition results in
a weak penalty factor and, consequently, slow convergence of
the algorithm. Instead, we use the vector ρi = (ρi1, ..., ρ

i
n),

where ρij = (ρ̃ij)
2 and n is the number of first-stage variables.

In f̂ ′s(xs, i), any ρ > 0 guarantees that the subproblems
are bounded. This is not the case when we consider absolute
distances. To overcome this, for every unbounded first-stage
variable j, we adjust ρ̃ij so that the overall cost defined by c, λ
and ρ̃ij is greater than zero for any xs,j ≥ x̄ij . In particular if
we observe for a positive unbounded variable j that:

ρ̃ij ≤ −2 min
s:(csj+λ

s,v
j)<0

(csj + λs,vj)

we impose:
ρ̃ij = −2 min

s:(csj+λ
s,v
j)<0

(csj + λs,vj) + γ

where γ > 0. In our experiments, we set γ = 1.

B. Guided MIP Solves for feasible solutions

PH does not directly provide feasible solutions until com-
plete convergence is attained. For difficult to solve instances, it
is highly likely that convergence will not occur within a given
time limit. Existing strategies typically stop the algorithm
before convergence is reached for all the first stage variables
and then search for global feasible solutions by fixing some
variables. Our new approach searches for feasible solutions
while the algorithm iterates. Our ability to find good feasible
solutions even after the first iteration is particularly useful for
instances such as ours with large and difficult subproblems,
in which a single iteration of mPH requires a considerable
computational effort. Moreover, different iterations of the al-
gorithm may generate different feasible solutions by exploring
different parts of the feasibility region.

Guided solves: We refer to first-stage variables that have the
same value in the solutions of all subproblems for a given
iteration as “agreed” variables. We obtain feasible solutions by
optimizing SUC with agreed variables fixed to the common
value. We call this problem SUC ′ and its solution as a

gap % mPH gap % mPH
Instance It 1 It 2 Instance It. 1 It. 2

D2020-03-02 0.1 0.11 D2020-12-29 0.01 0.02
D2020-01-04 0.13 0.11 D2020-10-10 0.01 0.01
D2020-05-14 0.09 0.09 D2020-07-16 0.87 -
D2020-08-07 - 0.13 D2020-06-30 0.23 0.12
D2020-09-27 0.03 0.02 D2020-04-15 0.02 0.02
D2020-11-09 0.05 0.06 D2020-02-12 0.00 0.00

Table I
COMPARISON OF SOLUTION QUALITY FOR 5-SCENARIOS INSTANCES

“guided solve.” Since we may have different sets of agreed
variables in different iterations, we may obtain a different
SUC ′ formulation at every iteration, producing a new solution.

For continuous first-stage variables, we define a tolerance
in which two first-stage variables can be considered equal and
therefore agreed. For any ε > 0, we denote by “ε−agreed”
all the variables for which the variance from a common value
is less than ε. All the ε−agreed variables can then be fixed
at their average value x̄i. If ε is smaller than the feasibility
tolerance of the MIP solver used for the guided solves, then
the definition of agreed and ε-agreed variables coincide.

SUC ′ feasibility: Observe that Problem SUC ′ is obtained
by adding constraints to the original SUC formulation; thus
the feasibility region of SUC ′ is contained in the region of
SUC. On the other hand, there is no guarantee that SUC ′ has
feasible solutions even if SUC does. In fact, it is not always
possible to satisfy the non-anticipativity constraints for all non-
fixed first-stage variables for all agreed variables. However, if a
combination of first-stage variables is known to be feasible for
all scenarios if it is feasible for one scenario, then is possible to
state a-priori that SUC ′ is always feasible if SUC is feasible.

ε-strategies: The parametric definition of ε-agreed variables
suggests certain natural strategies. When the number of agreed
first-stage variables is low, the guided solve requires a compu-
tational effort similar to the original SUC formulation. In this
case, considering integer variables that have similar (unequal)
values as ε-agreed may help. This causes an increased number
of fixed variables in SUC ′, with consequent reduction of
required computation and, potentially, solution quality.

Conversely, one may want to reduce the number of fixed
first-stage variables, when easy to solve SUC ′ problems return
poor or infeasible solutions. One strategy is to fix variables
that converged only in the previous iteration. This idea arises
from the fact that some generation resources are used only
when uncertainty is considered. For example, the subproblems
solved separately may not use such resources in the initial
iterations, even if they are used in the optimal solution. In this
case, fixing such resources to zero will cut off the optimum.

IV. COMPUTATIONAL RESULTS

Instances and Experimental Setup: We evaluate our mPH
algorithm on a testbed containing twelve 5-scenario instances
and one 20-scenario instance. Each instance corresponds to an
hour-timestep unit commitment problem for a single day in the
simulated year 2020, as described in Section I-A. We ran our
mPH algorithm on a Power7 processor, with 8 cores running at

Times [s]
Direct mPH mPH

Instance 0.05-Opt Serial Parallel
D2020-03-02 9923.30 1642 463.3
D2020-01-04 5318.20 2503.1 643.9
D2020-05-14 13708.30 1668.3 513.1
D2020-08-07 8097.70 1269.5 412.6
D2020-09-27 11842.70 1381.4 491.7
D2020-11-09 5484.30 1543.6 380.6
D2020-12-29 9192.00 2699 691.7
D2020-10-10 35951.50 3923.7 1020.7
D2020-07-16 2965.80 1221.5 301
D2020-06-30 5988.80 1110.9 321.1
D2020-04-15 36022.50 3650.4 1151.3
D2020-02-12 7642.10 1748.2 483.8
AVERAGES 12678.1 2030.13 572.90

Table II
COMPARISON OF EXECUTION TIMES FOR 5-SCENARIO INSTANCES

3.61GHz, each capable of four-way simultaneous multithread-
ing. Power7 executes instructions out-of-order. There are 12
execution units (including 2 fixed-point units and 2 load/store
units) per core shared by the 4 hardware threads.

A. Results

We compare mPH with “direct” solutions of the SUC for-
mulation using CPLEX 12.4 with standard parameters except
for “relative MIP gap tolerance” which is set to 0.05%. We use
the same version of CPLEX and the same parameter settings to
solve SUC ′ in mPH, but we set the relative MIP gap tolerance
to 0.5% for the subproblems SP is .

To reduce the computational requirements for solving
SUC ′, we fixed some second-stage variables in addition to
the first-stage “ε-agreed” variables. Any second-stage variable
that assumes the same value in the optimal solutions of all the
subproblems is fixed to this agreed value in SUC ′.

Five scenarios instance: In Table I we summarize the quality
of the results achieved for the 5-scenarios instances. In column
“It. 1” and “It. 2” we report the gap, in percentage, between
the optimal solutions obtained using the direct approach and
the feasible solutions returned by the guided solves after the
first two iterations. In our experiments, we stopped mPH after
two iterations since we obtained solutions comparable to the
optimum in just two iterations. We did obtain infeasible SUC ′

problems in two cases, but the overall performance was not
compromised since for every instance it was possible to reach
a feasible solution in either the first or second iteration.

Table II compares the solution times (in seconds) for
the 5-scenario problems. We achieve a 6 times speedup in
the average serial solution time. We also tested a parallel
implementation that solves all the subproblems in parallel,
under which the guided solve subsequent to iteration i is also
carried out in parallel with the subproblems of i + 1. In this
implementation, we find a 22 times average speedup.

In our experiments, we observed a decrease in subproblem
solution times for the second iteration, which is partially due
to information from the first iteration and partially due to a
different (penalizing) objective function. We also observe a
reduction in solution time for the guided solves, averaging a
40% improvement. In our experiments, the guided solve re-
optimized from scratch at every iteration, with no information

Times [s] Gap %
It. SP i

s Sum SP i
s Max SUC′

i SUC′
i-LB

1 7172.88 466.37 8781.04 0.02
2 2600.46 186.71 2419.81 0.02
3 3012.23 214.35 2072.5 0.01
4 2543.42 202.39 2277.18 0.01
5 2786.57 260.27 1732.35 0.01
6 3614.93 439.67 2120.29 0.01
7 4033.06 382.32 1218.11 0.02

Table III
RESULTS FOR THE 20-SCENARIOS INSTANCE

used from the previous iteration, so the reduced solution times
can only be attributed to the different fixed variables in SUC ′.

Twenty scenarios instance: Table III lists mPH execution
times and solution quality for the 20-scenario instance. Time
columns are the same as in the 5-scenario case, and the rows
represent the iteration number. The gap between the solutions
from the guided solves and the best known lower bound is
reported in column “Gap % SUC ′i-LB”. It is clear from the
results that the solutions provided by the guided solves are
extremely close to optimal. The feasible solutions returned by
mPH are the only valid upper bound in this case as the 20-
scenarios instance is intractable when solved with the direct
approach (no feasible solution was found in 24 hours).

Convergence: While mPH provided near optimal solutions
after 2 iterations, the convergence of the algorithm depends
on the effectiveness of the linear penalty function f̂s(xs, i).
To gauge this, we ran the algorithm for ten iterations for the
5-scenarios instances and seven iterations for the 20-scenario
instance; there were no cases of complete convergence.

In Figure 3 we report the values of δ. After the first iteration
the value of δ in the 5-scenarios instances becomes very small
and remains there. In the 20-scenario instance, we observed a
slight but constant reduction of δ in the following iterations.

To achieve complete algorithmic convergence, one could fix
the agreed variables both in SUC ′ and also in the subproblems
of following iterations. Alternatively, one could use a defini-
tion of εi that increases when the iterations of i increases.

V. CONCLUSIONS

Our mPH algorithm produces near-optimal solutions for
our stochastic unit commitment problems, with a 6 times im-
provement in serial solution time over the standard approach,
and a 22 times improvement in parallel. We can now solve

1 2 3 4 5 6 7 8 9 10
Iteration

0

10

20

30

40

50

60

70

80

90

δ

(a) 5 scenario instances

1 2 3 4 5 6
Iteration

0

10

20

30

40

50

60

δ

(b) 20 scenario instance

Figure 3. Evolution of δ.

stochastic problems with many more renewable scenarios than
previously achievable, including the solution of the formerly
intractable 20-scenario case. Given the recent interest in the
power industry for stochastic unit commitment models as a
way of managing uncertainty [16], these results represent a
solid tool that can be used to mitigate the computational
burden of such problems.

The methods proposed here suggest several areas for further
analysis. First, as mentioned in the ε-strategies paragraph,
there are different possible definitions of the agreed variables.
Second, when feasible solutions are available there is the
possibility (not exploited in this work) to use these solutions
to help convergence of PH or speed up the resolution process
in general. For example, if in a given iteration SUC ′ returns
a particularly good feasible solution, it may be advantageous
to fix some of the agreed variables in the subproblems. This
will help produce easier subproblems, with a consequent
reduction of computation, and may also help convergence of
the algorithm by progressively fixing more variables.

REFERENCES

[1] California State Senate, “Bill Number 2,” April 12 2011.
[2] T. Edmunds, A. Lamont, V. Bulaevskaya, C. Meyers, J. Mirocha,

A. Schmidt, M. Simpson, S. Smith, P. Sotorrio, P. Top, and Y. Yao,
“The value of storage and demand response for renewable integration,”
California Energy Commission, Tech. Rep. under contract CEC-500-10-
051, 2013, awaiting approval for public release.

[3] California Independent System Operator, “Integration of renewable
resources: Technical appendices for California ISO renewable integration
studies,” California ISO, Tech. Rep., 2010.

[4] Energy Exemplar, “PLEXOS Integrated Energy Modeling Software,”
2013, http://www.energyexemplar.com/.

[5] C. C. Carøe and R. Schultz, “Dual decomposition in stochastic integer
programming,” Ops Research Letters, vol. 24, pp. 37–45, 1999.

[6] A. Belloni, A. D. S. Lima, M. P. Maceira, and C. A. Sagastizábal,
“Bundle relaxation and primal recovery in unit commitment problems.
the Brazilian case,” Annals of Ops Research, vol. 120, pp. 21–44, 2003.

[7] G. Lulli and S. Sen, “A branch-and-price algorithm for multistage
stochastic integer programming with application to stochastic batch-
sizing problems,” Management Science, vol. 50, pp. 786–796, 2004.

[8] R. T. Rockafellar and R. J.-B. Wets, “Scenarios and policy aggregation
in optimization under uncertainty,” Mathematics of operations research,
vol. 16, pp. 119–147, 1991.

[9] D. Gade, S. Küçükyavuz, and S. Sen, “Decomposition algorithms with
parametric gomory cuts for two-stage stochastic integer programs,”
Mathematical Programming, pp. 1–26, 2012.

[10] T. Helgason and S. W. Wallace, “Approximate scenario solutions in the
progressive hedging algorithm,” Annals of Ops Research, vol. 31, pp.
425–444, 1991.

[11] R. J. Wets, “The aggregation principle in scenario analysis and stochastic
optimization,” in Algorithms and model formulations in mathematical
programming. Springer, 1989, pp. 91–113.

[12] J.-P. Watson, D. L. Woodruff, and D. R. Strip, “Progressive hedging
innovations for a stochastic spare parts support enterprise problem,”
Naval Research Logistics, 2007.

[13] A. De Silva and D. Abramson, “Computational experience with the
parallel progressive hedging algorithm for stochastic linear programs,”
in Proceedings of 1993 Parallel Computing and Transputers Conference
Brisbane. Citeseer, 1993, pp. 164–174.

[14] T. G. Crainic, X. Fu, M. Gendreau, W. Rei, and S. W. Wallace, “Pro-
gressive hedging-based metaheuristics for stochastic network design,”
Networks, vol. 58, pp. 114–124, 2011.

[15] J. M. Mulvey and H. Vladimirou, “Solving multistage stochastic net-
works: An application of scenario aggregation,” Networks, vol. 21, pp.
619–643, 1991.

[16] P. Ruiz, C. Philbrick, E. Zak, K. Cheung, and P. Sauer, “Uncertainty
management in the unit commitment problem,” IEEE Transactions on
Power Systems, vol. 24, pp. 642–651, 2009.

nijhuis2
Text Box
This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

